


# Protect Your Whole House



### Protect Your Whole House

UltraSafe Trio connects directly to your water main and uses proprietary MicronGuard filtration technology to give your family industry-leading protection against harmful contaminants and more.





#### Removes in excess of:

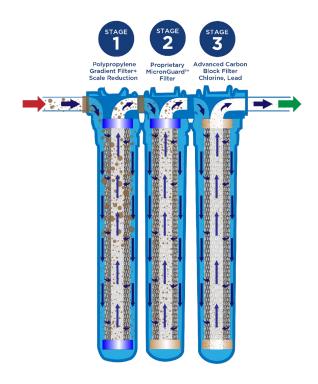
99.99% Chlorine Reduction/Removal 99.99% Chloramine Reduction/Removal 99.99% THMs Reduction/Removal

99.99% Pesticides Reduction/Removal

99.99% Bacteria Reduction/Removal

99.99% Virus Reduction/Removal

99.99% Cysts Reduction/Removal


99.99% Arsenic Reduction/Removal

95% PFAS, PFOA, PFOS Reduction/Removal

97.2% Lead Reduction/Removal

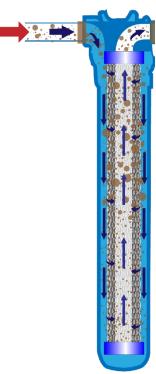
Bonus: Scale removal and water softening

# **UltraSafe Trio**



#### **Pure Way Whole House System**

- LOW COST
- SMALL Footprint
- No Electrical connection
- · No Chemicals required
- No Operating Expertise needed
- No Waste-line connected needed
- High Flow Rate with Ultra Filtration!


#### Our MicronGuard<sup>™</sup> allows us to combine:

- Activated Carbon
- Mechanical Filtration
- Sorbent Filtration
- Membrane Filtration
- Water Conditioning
- •U.V. Simulation
  Into ONE complete system with no controller



Polypropylene Gradient Filter+ Scale Reduction





Stage 1 uses a multi faceted filter to filter out large particles greater than 5 micron and to condition the incoming water so it can no longer form calcium carbonate. This filtration process extends the life and reduces maintenance of the MicronGuard™ element in the next stage.

- Filters out sediment
- Conditions water so glasses and faucets remain spotless

# Softening VS Anti-scale

#### Softeners for homes are used to stop calcium carbonate build up on water fixtures and to aid soaping in water

|                | HOW IT WORKS                                              | CALCIUM                                              | REGENERATION                                              | WATER USEAGE                                                            | CALCIUM<br>CARBONATE                                     | MINERALS                                                                        | REGENERATION<br>WASTE                                                       | WASTE OUTLET PLUMBING                       | BIOFILM GROWTH                                          |
|----------------|-----------------------------------------------------------|------------------------------------------------------|-----------------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------|---------------------------------------------|---------------------------------------------------------|
| Water Softener | Exchanges sodium ions<br>for calcium ions                 | Removes all calcium and lots of magnesium            | Requires regeneration with heavy salt solution frequently | Requires water rinse<br>after<br>regeneration wasting 3-<br>5% of water | Stops calcium carbonate<br>build up on water<br>fixtures | Water becomes<br>unhealthy due to lack of<br>critical minerals<br>andadded salt | Regeneration<br>wastewater with high<br>salt content damages<br>groundwater | Must be plumbed to the waste outlet (sewer) | Causes acceleration of biofilm growth in exchange tanks |
| Anti-Scale     | Alters calcium ion<br>so cannot form<br>calcium carbonate | Leaves calcium and<br>magnesium in<br>filtered water | No regeneration                                           | No rinse step                                                           | Stops calcium<br>carbonate build up<br>on water fixtures | Water maintains<br>mineral content,<br>remains healthy                          | No wastewater (no salt)                                                     | No sewer waste connection required          | No biofilm due<br>to MicronGuard™<br>filter design      |

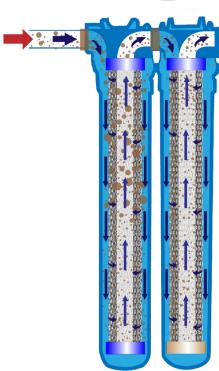






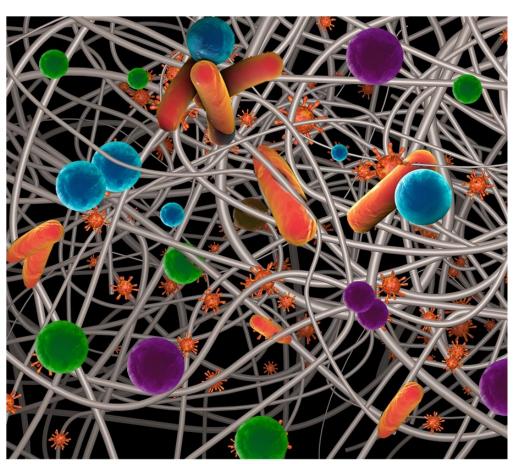
Softening

**Highlights** 


- Ultrafiltration+ is a wall unit no floor space needed
- No environmental damage from salt discharge
- Health benefits of calcium and magnesium. No high sodium levels in drinking water
- · Health benefits of siliphos



Proprietary MicronGuard™ Filter





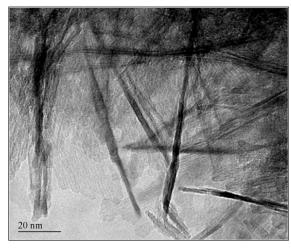



**Stage 2** uses the proprietary MicronGuard™ technology to filter out bacteria, viruses, cysts, spores, and other pathogens. It is engineered with an activated carbon high surface area paper to reduce pathogens, pesticides, pharmaceuticals, forever chemicals (PFOA/PFOS), and heavy metals (including lead). Incorporates Agion silver particles to keep filter from biofouling mimicking U.V.

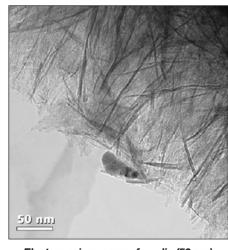
### Ultrafiltration w/ MicronGuard ™ Breakthrough Technology



Stage 2 MicronGuard filter requires less than 2 psi


- Exceeds nanofiltration results at low pressure:
- 99.999999% bacteria removal (>9 LRV\*)
- 3<sup>rd</sup> party testing conducted at two different laboratories\*\*
- 1.36 psi over 3-filter whole house system
- 99% reduction of heavy metals (includes 97.2% lead reduction)
- 95% reduction of PFAS (forever chemicals, PFOA/PFOS)
- No water loss (no back flushing or wastewater generated), unlike RO systems
- Does not need to be plumbed to septic or municipal wastewater outlet
- Extremely low pressure drop versus 30-40 psi drop with other whole house systems
- 10x dirt holding capacity than mechanical filters (spiral wound, polypropylene, etc.)
- Affordable, low maintenance, installs easily, all parts included, no electrical or waste connections




## MicronGuard - Design at the molecular level

VS

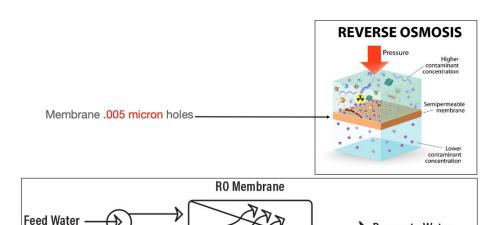
### MicronGuard <sup>™</sup>







Electron microscopy of media (50 nm)


To produce a filter that can be used to replace membranes using no electricity and used virtually no pressure required thinking at the molecular level.

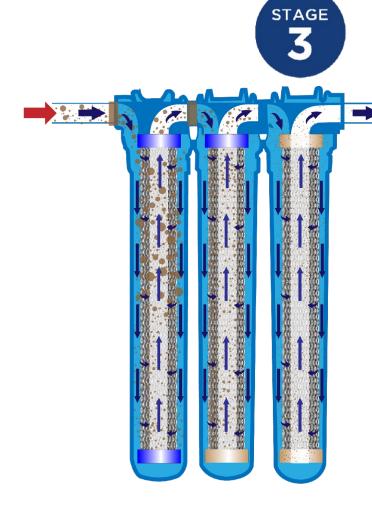
A filter media was developed to provide a tortuous water path without establishing a physical barrier to the water. Pathways average 2.5-3.0 micron

- HIGH water flow rate
- Low Pressure requirement
- No Electric Connection Needed
- No Wastewater Connection Needed



#### Reverse Osmosis




Reject Stream

(Higher concentration than feed water)

→ Permeate Water

(Low concentration of salts)

- LOW water flow rate
- High Pressure Pump Needed
- 240V Electrical Needed
- High Electric Draw
- · Wastewater Connection Needed



Advanced Carbon
Block Filter
Chlorine, Lead



**Stage 3** Final polishing of PFOA/PFOS, lead, chlorine, pesticides, and other contaminants with a high-capacity carbon filter. Improves taste and smell of water. This carbon will outperform similar carbons due to the purity of water at this step of the process.

### Ultrafiltration+ Test Data on Biologicals

| Unit  | Flow Rate,<br>LPM | Flow<br>Velocitya<br>LPM/cm2 |     |    | Removal<br>efficacy of<br>MS2, LRV |
|-------|-------------------|------------------------------|-----|----|------------------------------------|
| U1S 1 | 3.2               | 0.002b                       | 2.0 | >9 | >7                                 |

Note: Influent CFU count = 15,000,000 CFU

### **Pesticide Contaminants**

| Contaminant | Influent Concentration in ug/l | Treated Concentration in ug/I | Reduction | 1 %  |
|-------------|--------------------------------|-------------------------------|-----------|------|
| 4,4, DDD    | 50.1                           | <0.1                          |           | 99.9 |
| 4.4 DDE     | 50.2                           | <0.1                          |           | 99.9 |
| 4,4 DDT     | 50.1                           | <0.1                          |           | 99.9 |

### **Volatile Organic Contaminants**

| Contaminant               | Influent<br>Concentration in<br>ug/l | Treated Concentration in ug/l | Reduction % |
|---------------------------|--------------------------------------|-------------------------------|-------------|
| 1,1,1,2Tetrachloroethane  | 79.8                                 | <0.5                          | 99.9        |
| 1,1,1-Trichloroethane     | 81.2                                 | <0/                           | 99.9        |
| 1,1,2,2-Tetrachloroethane | 81                                   | 0. 1                          | 99          |
| 1,1,2-Trichloroethane     | 150.3                                | < .5                          | 99.9        |
| 1,1-Dichlorethane         | 80.2                                 | <b>√</b> 0.5                  | 99.9        |
| 1,1-Dichloroethane        | 81                                   | 0.5                           | 99.9        |
| 1,1-Dichloropropene       | 81.2                                 | :0.5                          | 99.9        |
| 1,2,3-Trichlorobenzene    | 80.1                                 | 0.7                           | 99.1        |
| 1,2,3-Trichloropropane    | 80.2                                 | :0.5                          | 99.9        |
| 1,2,4-Trichlorobenzene    | 160.1                                | :0.5                          | 99.9        |
| 1,2,4-Trimethylbenzene    | 80.5                                 | 0.5                           | 99.9        |
| 1,2-Dichlorobenzene       | 80.3                                 | <0.5                          | 99.9        |
| 1,2-Dichloroethane        | 80.4                                 | < .5                          | 99.9        |
| 1,2-Dichloropropane       | 80.3                                 | <05                           | 99.9        |
| 1,3,5-Trimethylbenzene    | 80.3                                 | <0.3                          | 99.9        |
| 1,3-Dichlorobenzene       | 80.1                                 | <0.5                          | 99.9        |
| 1,3-Dichloropropane       | 79.1                                 | <0.5                          | 99.9        |
| 1,4-Dichlorobenzene       | 40.3                                 | <0.5                          | 99.9        |
| 2,2-Dichloropropane       | 81.1                                 | <0.5                          | 99.9        |

| 2-Chlorotoluene         | 80.2  | <0.5 | 99.9 |
|-------------------------|-------|------|------|
| 4-Chlorotoluene         | 80.2  | <0.5 | 99.9 |
| -Isopropyltoluene       | 80.2  | <0.5 | 99.9 |
| enzene                  | 81.4  | <0.5 | 99.9 |
| Blomobnzene             | 80    | <0.5 | 99.9 |
| Bromochloromethane      | 80    | <0.5 | 99.9 |
| Brou odichloromethane   | 80.2  | <0.5 | 99.9 |
| Bronoform               | 80.2  | <0.5 | 99.9 |
| Brommethane             | 80.1  | <0.5 | 99.9 |
| Carbo Tetrachloride     | 81    | <0.5 | 99.9 |
| Chloro tenzene          | 79.5  | <0.5 | 99.9 |
| Chloro hane             | 80.2  | <0.5 | 99.9 |
| Chlorot:rm              | 80.1  | <0.5 | 99.9 |
| Chloroi ethane          | 80.1  | <0.5 | 99.9 |
| cis-1,2- ichloroethene  | 170.1 | <0.5 | 99.9 |
| cis-1,3                 | 50.2  | <0.5 | 99.9 |
| Dibron methane          | 80.1  | <0.5 | 99.9 |
| Dichlo odifluoromethane | 80.0  | <0.5 | 99.9 |
| Ethylk enzene           | 82.0  | <0.5 | 99.9 |
| Hexa hlorobutadiene     | 44    | <0.5 | 99.9 |
| ls propylbenzene        | 80.3  | <0.5 | 99.9 |

#### **Volatile Organic Contaminants (continued)**

| Alachlor           | 40.2 | <0.1         | 99.9 |
|--------------------|------|--------------|------|
| Aldrin             | 50.2 | <0.1         | 99.9 |
| Alpha-BHC          | 50.8 | <0.1         | 99.9 |
| Ametryn            | 50.0 | <0.1         | 99.9 |
| Atraton            | 50.2 | <0.7         | 99.9 |
| Atrazone           | 10.0 | <0           | 99.9 |
| Beta-BHC           | 50.9 | < .1         | 99.9 |
| Bromacil           | 51.2 | <b>√</b> 0.1 | 99.9 |
| Carbofuran         | 80.2 | 0.1          | 99.9 |
| Chlordane          | 40.2 | :0.1         | 99.9 |
| Chlomeb            | 51.0 | <0.1         | 99.9 |
| Chlorobenzilate    | 49.9 | <0.1         | 99.9 |
| Chlorothanlonil    | 50.2 | <0.1         | 99.9 |
| Chlorprophane      | 50.2 | <0.1         | 99.9 |
| Chlorpyrifos       | 50.3 | <0.1         | 99.9 |
| Cyanizene          | 50.1 | <0.1         | 99.9 |
| Delta-BHC          | 50.7 | <0.1         | 99.9 |
| Dichlorvos         | 50.2 | :0.1         | 99.9 |
| Diphenamid         | 50.2 | - 0.1        | 99.9 |
| Disulfoton         | 50.2 | <1           | 99.9 |
| Endosulfan Sulfate | 50.0 | <0 1         | 99.9 |
| Endrin             | 6.0  | <0.          | 99.9 |
| Endrin Aldehide    | 50.5 | <0.1         | 99.9 |
| Endrin Ketone      | 50.0 | <0.1         | 99.9 |
| Endusulfan I       | 49.8 | <0.1         | 99.9 |
| Endusulfan II      | 50.3 | <0.1         | 99.9 |
| Ethoprop           | 50.4 | <0.1         | 99.9 |
| Fenamiphos         | 50.2 | <0.1         | 99.9 |

#### **Metal and Chemical Element Contaminants**

| Water Contaminant | Influent Concentration in ug/l | Treated Concentration in ug/I | Reduction % |
|-------------------|--------------------------------|-------------------------------|-------------|
| Antimony          | 6.1                            | <0.5                          | 99.9        |
| Arsenic           | 50.0                           | <0.5                          | 99.9        |
| Berylium          | 50.0                           | <0.5                          | 99.9        |
| Bismuth           | 50.0                           | <0.5                          | 99.9        |
| Cadmium           | 50.0                           | <0.5                          | 99.9        |
| Chromium          | 50.0                           | 2.6                           | 99.1        |
| Copper            | 50.0                           | 5.2                           | 99.8        |
| Iron              | 50.0                           | 101                           | 96.7        |
| Lead              | 50.0                           | 4.14                          | 97.2        |
| Manganese         | 50.0                           | 150                           | 85.8        |
| Mercury           | 50.0                           | <0.5                          | 99.9        |
| Nickel            | 50.0                           | <0.5                          | 99.9        |
| Selenium          | 50.0                           | <0.5                          | 99.9        |
| Zinc              | 50.0                           | 21.1                          | 80.8        |

# Metal and Chemical Element Contaminants (continued)

| Methylene Chloride            | 81.2  | 1.04 | 98.8 |
|-------------------------------|-------|------|------|
| мтве                          | 81.5  | 1.83 | 97.8 |
| m-Xylene                      | 70.1  | <0.5 | 99.9 |
| Naphthalene                   | 80.4  | 1.4  | 98.3 |
| n-Butylbenzene                | 80.2  | <0.5 | 99.9 |
| n-Propylbenzene               | 80.2  | <0.5 | 99.9 |
| o-Xylene                      | 70.1  | <0.5 | 99.9 |
| sec-Butylbenzene              | 80.3  | <0.5 | 99.9 |
| Styrene                       | 80    | <0.5 | 99.9 |
| tert-Butylbenzene             | 80.2  | <0.5 | 99.9 |
| Tetrachloroethene             | 80.1  | <0.5 | 99.9 |
| Toluene                       | 80.2  | <0.5 | 99.9 |
| trans-1,2-Dichloroethene      | 80.5  | <0.5 | 99.9 |
| trans-1,3-<br>Dichloropropene | 81    | <0.5 | 99.9 |
| Trichloroethene               | 180.3 | <0.5 | 99.9 |
| Trichlorofluoromethane        | 80.1  | <0.5 | 99.9 |
| Vinyl chloride                | 80.3  | <0.5 | 99.9 |

Metal and Chemical Element Contaminants (continued)

| Fenarimol          | 50.2 | <0.1 | 99.9 |
|--------------------|------|------|------|
| Fluoridone         | 50.4 | <0.1 | 99.9 |
| Gamma-BHC          | 2.0  | <0.1 | 99.9 |
| Glyphosate         | 800  | <0.1 | 99.9 |
| Heptachlor         | 80.0 | <0.1 | 99.9 |
| Heptachlor Epoxide | 4    | <0.1 | 99.9 |
| Methoxychlor       | 120  | <0.1 | 99.9 |
| Molinate           | 50.4 | <0.1 | 99.9 |
| PCB'S              | 10.1 | <0.1 | 99.9 |
| Prometron          | 50.0 | <0.1 | 99.9 |
| Simazine           | 12.0 | <0.1 | 99.9 |
| Toxaphene          | 15.1 | <0.1 | 99.9 |

Critical Claims: Bacteria (ignore boil orders), viruses, cysts, spores, lead, PFOS/PFOA, pharmaceuticals, pesticides, chlorine, suspended solids



**STANDARD** 



\$2,499

2.5 x 10' System

1-2 People

**PREMIUM** 



\$3,499

2.5 x 20" System

3-4 People

GOLD



\$4,499

4.5 x 20" System

5+ People

## POINT OF USE



- 99.99999% bacteria removal (>7 LRV\*)
- 97.2% **lead** reduction
- 99% reduction of other VOCs
- Particulate reduction
- Additional Benefits
  - No storage tank required
  - No additional faucet
  - Easy to install







